Midterm 2, MATH 54, Linear Algebra and Differential Equations, Fall 2014	
--	--

Circle your section:

201	Shin	8am	71 Evans	212	Lim	1pm	3105 Etcheverry
202	Cho	8am	75 Evans	213	Tanzer	2pm	35 Evans
203	Shin	9am	105 Latimer	214	Moody	2pm	81 Evans
204	Cho	9am	254 Sutardja Dai	215	Tanzer	3pm	206 Wheeler
205	Zhou	$10 \mathrm{am}$	254 Sutardja Dai	216	Moody	3pm	61 Evans
206	Theerakarn	$10 \mathrm{am}$	179 Stanley	217	Lim	8am	310 Hearst
207	Theerakarn	11am	179 Stanley	218	Moody	$5 \mathrm{pm}$	71 Evans
208	Zhou	11am	254 Sutardja Dai	219	Lee	$5 \mathrm{pm}$	3111 Etcheverry
209	Wong	$12 \mathrm{pm}$	3 Evans	220	Williams	$12 \mathrm{pm}$	289 Cory
210	Tabrizian	$12 \mathrm{pm}$	9 Evans	221	Williams	3pm	140 Barrows
211	Wong	$1 \mathrm{pm}$	254 Sutardja Dai	222	Williams	$2\mathrm{pm}$	220 Wheeler
T C							

If none of the above, please explain:

This is a closed book exam, no notes allowed. It consists of 6 problems, each worth 10 points. We will grade all 6 problems, and count your top 5 scores.

Problem	Maximum Score	Your Score
1	10	
2	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total Possible	50	

1

Problem 1) Decide if the following statements are ALWAYS TRUE or SOMETIMES FALSE. You do not need to justify your answers. Write the full word **TRUE** or **FALSE** in the answer boxes of the chart. (Correct answers receive 2 points, incorrect answers or blank answers receive 0 points.)

Statement	1	2	3	4	5
Answer					

- 1) The matrices $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ are similar.
- 2) The matrices $A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ are similar.

3) For 2×2 matrices A and B, if **v** is an eigenvector of AB, then B**v** is an eigenvector of A.

4) If a 3×3 matrix A is diagonalizable with eigenvalues ± 1 , then it is an orthogonal matrix.

5) If $\|\mathbf{u} - \mathbf{v}\| = \|\mathbf{u} + \mathbf{v}\|$, then \mathbf{u} and \mathbf{v} are orthogonal.

Problem 2) Indicate with an X in the chart all of the answers that satisfy the questions below. You do not need to justify your answers. It is possible that any number of the answers satisfy the questions. (A completely correct row of the chart receives 2 points, a partially correct row receives 1 point, but any incorrect X in a row leads to 0 points.)

	(a)	(<i>b</i>)	(c)	(d)	(e)
Question 1					
Question 2					
Question 3					
Question 4					
Question 5					

1) Which of the following conditions guarantees an $n \times n$ real matrix A is diagonalizable with real eigenvalues?

- a) Every eigenvalue of A has an eigenvector.
- b) There is a basis of \mathbb{R}^n consisting of real eigenvectors for A.
- c) $\det(A \lambda I_n) = \lambda^n \lambda^{n-1}$ and $\dim Nul(A) = 1$.
- d) det $(A \lambda I_n) = \lambda^n \lambda^{n-2}$ and dim Nul(A) = n 2.
- e) The inverse of A is diagonalizable with real eigenvalues.

2) For what h is the matrix

$$\begin{bmatrix} 1 & -h^2 & 2h \\ 0 & 2h & h \\ 0 & 0 & h^2 \end{bmatrix}$$

diagonalizable with real eigenvalues?

a)
$$h = -2$$
 b) $h = -1$ c) $h = 0$ d) $h = 1$ e) $h = 2$

3) Which of the following linear transformations $T: P_2 \to P_2$ have rank 1?

a)
$$T(p(x)) = p'(x)$$
 b) $T(p(x)) = p''(x)$ c) $T(p(x)) = (1+x)p'(x)$

d)
$$T(p(x)) = (1+x)p''(x)$$
 e) $T(p(x)) = (1+x)p(1)$

4) Which of the following are a basis B of \mathbb{R}^3 so that for $\mathbf{x} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$ we have $[\mathbf{x}]_B = \begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix}$?

$$a) \begin{bmatrix} -1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\3\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\1 \end{bmatrix} b) \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} -6\\1\\1 \end{bmatrix}, \begin{bmatrix} -2\\3\\0 \end{bmatrix} c) \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\1 \end{bmatrix} \\ d) \begin{bmatrix} 1\\-3\\2 \end{bmatrix}, \begin{bmatrix} -4\\9\\-5 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} e) \begin{bmatrix} -2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

5) Which of the following linear transformations $\mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{x} \mapsto A\mathbf{x}$ are given by an orthogonal matrix A?

- a) Reflection across the line x = y.
- b) Rotation by $\pi/4$ about the origin.
- c) A shear transformation fixing the line y = 0.
- d) Reflection across the line x = y followed by reflection across the line x = 0.
- e) Scaling by 2 followed by rotation by $\pi/4$ about the origin followed by scaling by 1/2.

Problem 3) a) (4 points) Find the eigenvalues and a basis consisting of eigenvectors of

$$A = \begin{bmatrix} 1 & 1 & -1 \\ -3 & -3 & 1 \\ -3 & -3 & 1 \end{bmatrix}$$

b) (3 points) Find the coordinates of the vector

$$\mathbf{v} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

with respect to the basis of eigenvectors.

c) (3 points) Calculate A^{2014} **v**.

Problem 4) a) (4 points) Calculate the matrix [T] of the linear transformation

$$T: P_2 \to \mathbb{R}^3$$
 $T(p(x)) = \begin{bmatrix} p(1) \\ p'(0) - p'(1) \\ p'(0) + p'(1) \end{bmatrix}$

with respect to the basis $B = \{1, 1 + x, 1 + x + x^2\}$ of P_2 and the standard basis of \mathbb{R}^3 .

b) (4 points) Find bases of P_2 and \mathbb{R}^3 such that the matrix of T satisfies

$$[T] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

c) (2 points) Find bases of P_2 and \mathbb{R}^3 such that the matrix of T^{-1} satisfies

$$[T^{-1}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Problem 5) Consider the subspace W of \mathbb{R}^4 spanned by

$$\mathbf{u} = \begin{bmatrix} 1\\0\\-2\\2 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 1\\-1\\0\\4 \end{bmatrix}$$

a) (4 points) Find a nonzero vector \mathbf{w} in W orthogonal to \mathbf{u} .

b) (3 points) Find the orthogonal projection of the vector

$$\mathbf{y} = \begin{bmatrix} 3\\-1\\2\\1 \end{bmatrix}$$

to the subspace W.

c) (3 points) Find the orthogonal projection of the vector \mathbf{y} to the orthogonal subspace W^{\perp} .

Midterm 2, MATH 54, Linear Algebra and Differential Equations, Fall 2014

Problem 6) (10 points) Fill in the blanks (each worth 1/2 a point) in the proof of the following assertion.

Proof. Since	, the only	
There must be a correspo	onding	, which we will call \mathbf{v} , because
	implies	is not invertible, and therefore
	must be nontrivial.	
Choose any \mathbf{w} linearly in	dependent from \mathbf{v} . Thus the	pair v , w is a
which we will call B , becaus	e \mathbf{v}, \mathbf{w} must also	Thus there exist a, b
b that $A\mathbf{w} = a\mathbf{v} + b\mathbf{w}$. The	e matrix of A with respect t	to B is then
	$[A]_B = \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & $	
We see that	$_$ = 0, since the $_$	entries
f any	matrix are its	
Finally, let P_B be the matrix	atrix with columns \mathbf{v}, \mathbf{w} . Th	$en A = \$
ince it is easy to see that _	:	= 0, we also find
$A^{2} =$	=	= 0.